Skip to content

Argus: AI Architecture for Scale (1 to 10 Crore Users)

The Problem We're Solving

Traditional testing tools are: 1. Human-dependent - Someone must write/record tests 2. Reactive - Fix bugs after they happen 3. Isolated - Each company learns alone 4. Expensive - Pay per seat, not per value

Argus is: 1. AI-native - Tests generated from production errors 2. Predictive - Prevent bugs before they manifest 3. Collective - Cross-company pattern intelligence 4. Cost-optimized - Free tier infrastructure


Infrastructure Stack (Maximizing Free Tier)

┌─────────────────────────────────────────────────────────────────────────┐
│                         CLOUDFLARE EDGE (Global, 300+ PoPs)             │
├─────────────────────────────────────────────────────────────────────────┤
│                                                                          │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐ │
│  │   Workers    │  │   Browser    │  │  Workers AI  │  │   Vectorize  │ │
│  │   (Free)     │  │  Rendering   │  │   (FREE!)    │  │   (Free 5M)  │ │
│  │ 100k req/day │  │   (Free)     │  │  Llama 3.1   │  │   vectors    │ │
│  └──────────────┘  └──────────────┘  └──────────────┘  └──────────────┘ │
│                                                                          │
│  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐  ┌──────────────┐ │
│  │     KV       │  │      R2      │  │      D1      │  │   Queues     │ │
│  │   (Cache)    │  │  (Storage)   │  │  (SQLite)    │  │   (Async)    │ │
│  │ 100k reads   │  │   10GB free  │  │  5GB free    │  │  100k msgs   │ │
│  └──────────────┘  └──────────────┘  └──────────────┘  └──────────────┘ │
│                                                                          │
└─────────────────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────────────────┐
│                         DATA LAYER (PostgreSQL)                          │
├─────────────────────────────────────────────────────────────────────────┤
│                                                                          │
│  ┌──────────────────────┐    ┌──────────────────────┐                   │
│  │      Supabase        │    │        Neon          │                   │
│  │   (Primary DB)       │    │   (Scale-out)        │                   │
│  │   500MB free         │    │   Serverless PG      │                   │
│  │   Realtime subs      │    │   Branch per PR      │                   │
│  └──────────────────────┘    └──────────────────────┘                   │
│                                                                          │
└─────────────────────────────────────────────────────────────────────────┘

Total Free Tier Value: ~$500/month equivalent


AI Cost Optimization Strategy

The Tiered Model Approach

┌─────────────────────────────────────────────────────────────┐
│                    AI MODEL ROUTER                           │
├─────────────────────────────────────────────────────────────┤
│                                                              │
│  Request → Classify Complexity → Route to Optimal Model     │
│                                                              │
│  ┌─────────────┐  ┌─────────────┐  ┌─────────────┐         │
│  │   TIER 1    │  │   TIER 2    │  │   TIER 3    │         │
│  │  Workers AI │  │   Claude    │  │   Claude    │         │
│  │  Llama 3.1  │  │   Haiku     │  │   Sonnet    │         │
│  │             │  │             │  │             │         │
│  │  COST: $0   │  │ $0.25/1M tok│  │ $3/1M tok   │         │
│  │             │  │             │  │             │         │
│  │  USE FOR:   │  │  USE FOR:   │  │  USE FOR:   │         │
│  │  - Simple   │  │  - Medium   │  │  - Complex  │         │
│  │    errors   │  │    tests    │  │    debug    │         │
│  │  - Pattern  │  │  - Code     │  │  - Multi-   │         │
│  │    matching │  │    analysis │  │    file     │         │
│  │  - Caching  │  │             │  │    fixes    │         │
│  │    lookups  │  │             │  │             │         │
│  └─────────────┘  └─────────────┘  └─────────────┘         │
│                                                              │
│  Distribution Target: 70% / 25% / 5%                        │
│  Effective Cost: $0.008/test (vs $0.10 naive)               │
│                                                              │
└─────────────────────────────────────────────────────────────┘

Caching Strategy (70% AI Cost Reduction)

// Pattern-based caching system
interface CachedTest {
  pattern_hash: string;      // Normalized error signature
  embedding_hash: string;    // Semantic similarity key
  generated_test: string;    // Cached test code
  success_rate: number;      // How often this test works
  use_count: number;         // Times reused
}

// Flow:
// 1. Error comes in
// 2. Generate pattern hash + embedding
// 3. Check Vectorize for similar patterns (cosine > 0.85)
// 4. If found: Return cached test (FREE!)
// 5. If not: Generate new test, cache it

// At scale: 70% cache hit rate = 70% cost savings

Fine-Tuned Small Models (Future)

Phase 1 (Now): Use Workers AI + Claude fallback
Phase 2 (6 months): Collect training data from successful generations
Phase 3 (12 months): Fine-tune Llama 3.1 on our test generation patterns
Phase 4 (18 months): Deploy custom model on Workers AI (FREE inference!)

Result: 95% of requests handled by FREE fine-tuned model

Scalability: 1 User to 10 Crore Users

Architecture Evolution

┌─────────────────────────────────────────────────────────────────────────┐
│                           SCALE LEVELS                                   │
├─────────────────────────────────────────────────────────────────────────┤
│                                                                          │
│  LEVEL 1: 1-1,000 Users (Startup)                                       │
│  ├── Single Cloudflare Worker                                           │
│  ├── Supabase (500MB free)                                              │
│  ├── Workers AI only                                                    │
│  └── Cost: ~$0/month                                                    │
│                                                                          │
│  LEVEL 2: 1,000-100,000 Users (Growth)                                  │
│  ├── Multiple Workers (regional)                                        │
│  ├── Supabase Pro ($25/month)                                           │
│  ├── Workers AI + Haiku fallback                                        │
│  ├── Vectorize for pattern caching                                      │
│  └── Cost: ~$100-500/month                                              │
│                                                                          │
│  LEVEL 3: 100,000-1,000,000 Users (Scale)                               │
│  ├── Cloudflare Workers (unlimited)                                     │
│  ├── Neon serverless (auto-scaling)                                     │
│  ├── Full AI model tiering                                              │
│  ├── Regional data residency                                            │
│  └── Cost: ~$2,000-10,000/month                                         │
│                                                                          │
│  LEVEL 4: 1,000,000-10,000,000 Users (Enterprise)                       │
│  ├── Multi-region Workers                                               │
│  ├── Dedicated database clusters                                        │
│  ├── Custom fine-tuned models                                           │
│  ├── On-premise option for enterprises                                  │
│  └── Cost: ~$20,000-100,000/month                                       │
│                                                                          │
│  LEVEL 5: 10,000,000+ Users (Global)                                    │
│  ├── Cloudflare Enterprise                                              │
│  ├── Globally distributed data                                          │
│  ├── Self-hosted model inference                                        │
│  ├── White-label solutions                                              │
│  └── Cost: Variable (profitable at this scale)                          │
│                                                                          │
└─────────────────────────────────────────────────────────────────────────┘

Key Insight: Cloudflare = Infinite Scale at Near-Zero Marginal Cost

Traditional SaaS:
├── AWS Lambda: $0.20 per 1M requests
├── + API Gateway: $3.50 per 1M requests
├── + Data transfer: $0.09/GB
└── Total: ~$4/1M requests

Cloudflare Workers:
├── First 100k requests/day: FREE
├── Beyond: $0.50 per 1M requests
├── + No data transfer costs (edge)
└── Total: ~$0.50/1M requests (8x cheaper!)

The Data Flywheel (Our True Moat)

┌─────────────────────────────────────────────────────────────────────────┐
│                         DATA FLYWHEEL                                    │
├─────────────────────────────────────────────────────────────────────────┤
│                                                                          │
│                     ┌──────────────────┐                                │
│                     │   More Users     │                                │
│                     └────────┬─────────┘                                │
│                              │                                          │
│                              ▼                                          │
│              ┌───────────────────────────────┐                          │
│              │  More Error Patterns Learned  │                          │
│              └───────────────┬───────────────┘                          │
│                              │                                          │
│                              ▼                                          │
│              ┌───────────────────────────────┐                          │
│              │  Better Test Generation       │                          │
│              │  (Higher cache hit rate)      │                          │
│              └───────────────┬───────────────┘                          │
│                              │                                          │
│                              ▼                                          │
│              ┌───────────────────────────────┐                          │
│              │  Fewer Production Bugs        │                          │
│              └───────────────┬───────────────┘                          │
│                              │                                          │
│                              ▼                                          │
│              ┌───────────────────────────────┐                          │
│              │  Higher Trust / NPS           │                          │
│              └───────────────┬───────────────┘                          │
│                              │                                          │
│                              ▼                                          │
│                     ┌──────────────────┐                                │
│                     │   More Users     │◄────── FLYWHEEL REPEATS       │
│                     └──────────────────┘                                │
│                                                                          │
│  KEY METRIC: Pattern Library Size                                       │
│  ├── 1,000 patterns = Useful                                            │
│  ├── 10,000 patterns = Competitive advantage                            │
│  ├── 100,000 patterns = Defensible moat                                 │
│  └── 1,000,000 patterns = Industry standard                             │
│                                                                          │
└─────────────────────────────────────────────────────────────────────────┘

Pricing Strategy

Free Forever (Loss Leader)

├── 100 test runs/month
├── Workers AI only (FREE for us)
├── 1 project
├── 3 integrations
├── Community support
├── Pattern learning ON (they contribute data)
└── OUR COST: ~$0

Pro - $49/month (Cash Cow)

├── 1,000 test runs/month
├── AI model tiering (Haiku + Workers AI)
├── 5 projects
├── All integrations
├── Email support
├── Predictive quality
├── AI Quality Score
└── OUR COST: ~$5-10/month → 80% margin

Team - $199/month (Growth Driver)

├── 10,000 test runs/month
├── Full AI access (Sonnet for complex)
├── Unlimited projects
├── Slack support
├── Custom webhooks
├── API access
├── Team analytics
└── OUR COST: ~$30-50/month → 75% margin

Enterprise - Custom ($5,000+/month)

├── Unlimited everything
├── Dedicated support
├── SLA guarantees
├── On-premise option
├── Custom AI model training
├── White-label option
├── SSO/SAML
└── OUR COST: Variable → 60-70% margin

Competitive Moat Summary

What Makes Us Defensible

Moat Type Description Strength
Network Effects More users = better patterns = better for everyone ★★★★★
Data Flywheel Error patterns are cumulative and defensible ★★★★★
Cost Structure Cloudflare free tier = can undercut anyone ★★★★☆
Infrastructure Lock-in Deep CF integration hard to replicate ★★★★☆
Switching Costs Integrated into CI/CD, hard to remove ★★★☆☆

What Others CAN'T Easily Copy

  1. Cross-Company Pattern Learning
  2. Legal complexity (privacy, data sharing)
  3. Requires scale to be useful
  4. Network effects compound

  5. Production-to-Test Loop

  6. Requires deep integrations (Sentry, Datadog, etc.)
  7. Existing players (Sentry) won't cannibalize their product
  8. Testing tools (Mabl) don't have production data

  9. Cloudflare-Native Architecture

  10. Browser Rendering is unique to CF
  11. Workers AI is free only on CF
  12. Vectorize integration is seamless

The 2050 Vision: Self-Evolving Quality

TODAY (2024):
├── Developers write code
├── Bugs go to production
├── Monitoring catches bugs
├── Someone writes a test
└── Repeat

NEAR FUTURE (2026):
├── Developers write code
├── AI predicts likely bugs before deploy
├── Auto-generated tests catch issues in CI
├── Production errors auto-generate tests
└── Tests self-heal when UI changes

FAR FUTURE (2030+):
├── AI assists in writing code
├── AI simultaneously writes tests
├── Quality is a continuous gradient, not pass/fail
├── Cross-company intelligence prevents known bugs
└── "Testing" as a separate activity disappears

ARGUS POSITION:
├── We're building the bridge from TODAY to FAR FUTURE
├── Each feature we ship moves the industry forward
├── The pattern library becomes the "immune system" of software
└── Eventually: "All software uses Argus patterns" (like how all search uses Google's index)

Implementation Roadmap

Phase 1: Foundation (Now - 3 months)

  • Core testing engine
  • Production event ingestion
  • AI test generation
  • Risk scoring
  • Pattern learning
  • Predictive quality
  • Fine-tune caching for 70% hit rate
  • Launch free tier

Phase 2: Growth (3-6 months)

  • 10 more integrations (Linear, Jira, PagerDuty, etc.)
  • VS Code extension
  • GitHub App
  • Pattern marketplace (share/discover patterns)
  • Fine-tune small model on our data

Phase 3: Scale (6-12 months)

  • Multi-region deployment
  • Enterprise features (SSO, audit logs)
  • On-premise option
  • API for third-party integrations
  • White-label program

Phase 4: Dominance (12-24 months)

  • Industry-standard pattern library
  • Acquisition targets or acquirer
  • Platform play (let others build on Argus)
  • Research publications (credibility)

Summary: Why Argus Wins

1. COST ADVANTAGE
   └── Cloudflare free tier = near-zero infrastructure cost

2. NETWORK EFFECTS
   └── More users = better patterns = more value for everyone

3. UNIQUE DATA
   └── Production-to-test loop generates defensible data

4. AI-NATIVE
   └── Not "AI-washed" - AI is core, not a feature

5. TIMING
   └── LLMs just became good enough for reliable test generation

6. TEAM
   └── [Your competitive advantage here]

The future of software quality is predictive, automated, and collective. Argus is building that future.